Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Trends in Biomathematics: Stability and Oscillations in Environmental, Social, and Biological Models: Selected Works from the BIOMAT Consortium Lectures, Rio de Janeiro, Brazil, 2021 ; : 211-223, 2023.
Article in English | Scopus | ID: covidwho-20237879

ABSTRACT

Humanity is currently living a true nightmare never seen before due to the pandemic caused by COVID-19 disease, scientific researchers are working day and night to find an ideal vaccine that eradicates this pandemic. The purpose of this paper is to investigate a SIHV pandemic model taking into account a vaccination strategy. For this aim, we consider a model with four compartments that describes the interaction between the susceptible cases S, the real infected cases I, the hospitalized, confirmed infected cases H and the vaccinated-treated individuals V. We establish the local stability of our model, depending on the basic reproduction number, by using the Routh-Hurwitz theorem. We perform some numerical simulations in order to confirm our theoretical results and discuss the effect of the rate of vaccination on controlling the spread of COVID-19. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.

2.
Journal of Difference Equations and Applications ; 2023.
Article in English | Web of Science | ID: covidwho-20232153

ABSTRACT

Several efforts have been recently devoted to the studies on epidemic mathematical models based on fractional-order operators, by virtue of their capability to take into account memory effects and nonlocal features. The aim of this paper is to make a contribution to the topic by introducing a novel Covid-19 model described by non-integer-order difference equations. By conducting a stability analysis, the paper shows that the conceived system has two fixed points at most, i.e. a disease-free fixed point and an endemic fixed point. In particular, a theorem is proved, which assures the global stability of the disease-free fixed point, indicating that the pandemic will disappear when a simple condition on the system parameters is satisfied. Finally, simulation results are carried out with the aim to highlight the capability of the conceived approach.

3.
Aims Mathematics ; 8(3):5918-5933, 2023.
Article in English | Web of Science | ID: covidwho-2201205

ABSTRACT

In this manuscript, we are proposing a new kind of modified Susceptible Exposed Infected Quarantined Recovered model (SEIQR) with some assumed data. The novelty imposed here in the study is that we are studying simultaneously SIR, SEIR, SIQR, and SEQR pandemic models with the same data unchanged as the SEIQR model. We are taking this model a step ahead by using a non-helpful transition because it was mostly skipped in the literature. All sorts of features that are essential to study the models, such as basic reproduction number, stability analysis, and numerical simulations have been examined for this modified model with other models.

4.
Partial Differ Equ Appl Math ; 6: 100460, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2095872

ABSTRACT

In this paper, a mathematical epidemiological model in the form of reaction diffusion is proposed for the transmission of the novel coronavirus (COVID-19). The next-generation method is utilized for calculating the threshold number R 0 while the least square curve fitting approach is used for estimating the parameter values. The mathematical epidemiological model without and with diffusion is simulated through the operator splitting approach based on finite difference and meshless methods. Further, for the graphical solution of the non-linear model, we have applied a one-step explicit meshless procedure. We study the numerical simulation of the proposed model under the effects of diffusion. The stability analysis of the endemic equilibrium point is investigated. The obtained numerical results are compared mutually since the exact solutions are not available.

5.
Symmetry-Basel ; 14(9), 2022.
Article in English | Web of Science | ID: covidwho-2071780

ABSTRACT

The model of any epidemic illness is evolved from the current susceptibility. We aim to construct a model, based on the literature, different to the conventional examinations in epidemiology, i.e., what will occur depends on the susceptible cases, which is not always the case;one must consider a model with aspects such as infections, recoveries, deaths, and vaccinated populations. Much of this information may not be available. So without artificially assuming the unknown aspects, we frame a new model known as IVRD. Apart from qualitative evaluation, numerical evaluation has been completed to aid the results. A novel approach of calculating the fundamental reproduction/transmission range is presented, with a view to estimating the largest number of aspects possible, with minimal restrictions on the spread of any disease. An additional novel aspect of this model is that we include vaccines with the actively infected cases, which is not common. A few infections such as rabies, ebola, etc., can apply this model. In general, the concept of symmetry or asymmetry will exist in every epidemic model. This model and method can be applied in scientific research in the fields of epidemic modeling, the medical sciences, virology, and other areas, particularly concerning rabies, ebola, and similar diseases, to show how immunity develops after being infected by these viruses.

6.
Asian-European Journal of Mathematics ; 2022.
Article in English | Scopus | ID: covidwho-1986410

ABSTRACT

There are various mathematical models that have been designed for forecasting the future behavior of coronavirus spreading, which helps to rapidly control the process while there is no treatment and vaccines. The main aim of this study is to describe COVID-19 dynamics in Turkey by using a Susceptible-Exposed-Infected-Recovered-Deceased (SEIRD) model. For this purpose, a new SEIRD model of nCOVID-19 and its fractional-order version are designed. The basic reproduction number is calculated with the generation operator method. All possible equilibria of the dynamic model are investigated in terms of the basic reproduction number. Further, stability conditions are obtained through the Routh-Hurwitz and Lyapunov stability theories. Finally, some numerical simulations of the dynamic system and its fractional version are given based on the data from the number of nCOVID-19 cases in Turkey. These results provide to implicate the theoretical findings corresponding to the model. © 2022 World Scientific Publishing Company.

7.
AIMS MATHEMATICS ; 7(9):15939-15964, 2022.
Article in English | Web of Science | ID: covidwho-1939112

ABSTRACT

In this study, the COVID-19 epidemic model is established by incorporating quarantine and isolation compartments with Mittag-Leffler kernel. The existence and uniqueness of the solutions for the proposed fractional model are obtained. The basic reproduction number, equilibrium points, and stability analysis of the COVID-19 model are derived. Sensitivity analysis is carried out to elaborate the influential parameters upon basic reproduction number. It is obtained that the disease transmission parameter is the most dominant parameter upon basic reproduction number. A convergent iterative scheme is taken into account to simulate the dynamical behavior of the system. We estimate the values of variables with the help of the least square curve fitting tool for the COVID-19 cases in Pakistan from 04 March to May 10, 2020, by using MATLAB.

8.
Chaos Solitons Fractals ; 160: 112156, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1866961

ABSTRACT

By March 14th 2022, Spain is suffering the sixth wave of the COVID-19 pandemic. All the previous waves have been intimately related to the degree of imposed mobility restrictions and its consequent release. Certain factors explain the incidence of the virus across regions revealing the weak locations that probably require some medical reinforcements. The most relevant ones relate with mobility restrictions by age and administrative competence, i.e., spatial constrains. In this work, we aim to find a mathematical descriptor that could identify the critical communities that are more likely to suffer pandemic outbreaks and, at the same time, to estimate the impact of different mobility restrictions. We analyze the incidence of the virus in combination with mobility flows during the so-called second wave (roughly from August 1st to November 30th, 2020) using a SEIR compartmental model. After that, we derive a mathematical descriptor based on linear stability theory that quantifies the potential impact of becoming a hotspot. Once the model is validated, we consider different confinement scenarios and containment protocols aimed to control the virus spreading. The main findings from our simulations suggest that the confinement of the economically non-active individuals may result in a significant reduction of risk, whose effects are equivalent to the confinement of the total population. This study is conducted across the totality of municipalities in Spain.

9.
5th International Conference on Intelligent Computing in Data Sciences, ICDS 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1672721

ABSTRACT

COVID-19 has arisen great control challenges to Governments and decision-makers. In 2020, the COVID-19 pandemic has spread around the world, causing nearly 123 million of confirmed cases (March 22, 2021). With the fact that cities are densely populated and public transport is a place that gathers a great number of populations, questions of the impact of urban mobility on COVID-19 propagation and the impact of protection measures on COVID-19 propagation are to be addressed. This research paper presents our novel transport based approach for modeling and simulating COVID-19 disease centered on the SUMO traffic simulator. Conventional approaches will be presented firstly, we discuss their pros and cons and we give a comparison. Based on their comparison, we noticed that mathematical, spatiooral, cellular automata and agent-based models cannot represent many transport aspects related to transport restrictions (e.g., barriers and reduction of vehicles capacities). We detail then the proposed approach in which we describe the required data, which are Open Street Map data, traffic data, individuals' data, pandemic and restrictions data. We are currently using this approach for developing a COVID-19 simulator based on the SUMO traffic simulator. Obtained intermediate results confirmed that the proposed approach addresses well the above-mentioned questions. © 2021 IEEE.

10.
Computers, Materials and Continua ; 71(2):2141-2157, 2022.
Article in English | Scopus | ID: covidwho-1574607

ABSTRACT

In this article, a brief biological structure and some basic properties of COVID-19 are described. A classical integer order model is modified and converted into a fractional order model with ξ as order of the fractional derivative. Moreover, a valued structure preserving the numerical design, coined as Grunwald–Letnikov non-standard finite difference scheme, is developed for the fractional COVID-19 model. Taking into account the importance of the positivity and boundedness of the state variables, some productive results have been proved to ensure these essential features. Stability of the model at a corona free and a corona existing equilibrium points is investigated on the basis of Eigen values. The Routh–Hurwitz criterion is applied for the local stability analysis. An appropriate example with fitted and estimated set of parametric values is presented for the simulations. Graphical solutions are displayed for the chosen values of ξ (fractional order of the derivatives). The role of quarantined policy is also determined gradually to highlight its significance and relevancy in controlling infectious diseases. In the end, outcomes of the study are presented. © 2022 Tech Science Press. All rights reserved.

11.
Comput Methods Biomech Biomed Engin ; 25(6): 619-640, 2022 May.
Article in English | MEDLINE | ID: covidwho-1488082

ABSTRACT

In this research, COVID-19 model is formulated by incorporating harmonic mean type incidence rate which is more realistic in average speed. Basic reproduction number, equilibrium points, and stability of the proposed model is established under certain conditions. Runge-Kutta fourth order approximation is used to solve the deterministic model. The model is then fractionalized by using Caputo-Fabrizio derivative and the existence and uniqueness of the solution are proved by using Banach and Leray-Schauder alternative type theorems. For the fractional numerical simulations, we use the Adam-Moulton scheme. Sensitivity analysis of the proposed deterministic model is studied to identify those parameters which are highly influential on basic reproduction number.


Subject(s)
COVID-19 , Basic Reproduction Number , COVID-19/epidemiology , Humans , Incidence , Pandemics
12.
Nonlinear Dyn ; 109(1): 33-45, 2022.
Article in English | MEDLINE | ID: covidwho-1401060

ABSTRACT

Mathematical models based on fractional-order differential equations have recently gained interesting insights into epidemiological phenomena, by virtue of their memory effect and nonlocal nature. This paper investigates the nonlinear dynamic behavior of a novel COVID-19 pandemic model described by commensurate and incommensurate fractional-order derivatives. The model is based on the Caputo operator and takes into account the daily new cases, the daily additional severe cases, and the daily deaths. By analyzing the stability of the equilibrium points and by continuously varying the values of the fractional order, the paper shows that the conceived COVID-19 pandemic model exhibits chaotic behaviors. The system dynamics are investigated via bifurcation diagrams, Lyapunov exponents, time series, and phase portraits. A comparison between integer-order and fractional-order COVID-19 pandemic models highlights that the latter is more accurate in predicting the daily new cases. Simulation results, besides to confirming that the novel fractional model well fit the real pandemic data, also indicate that the numbers of new cases, severe cases, and deaths undertake chaotic behaviors without any useful attempt to control the disease. Supplementary Information: The online version contains supplementary material available at 10.1007/s11071-021-06867-5.

13.
Results Phys ; 29: 104737, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1373248

ABSTRACT

The newly arose irresistible sickness known as the Covid illness (COVID-19), is a highly infectious viral disease. This disease caused millions of tainted cases internationally and still represent a disturbing circumstance for the human lives. As of late, numerous mathematical compartmental models have been considered to even more likely comprehend the Covid illness. The greater part of these models depends on integer-order derivatives which cannot catch the fading memory and crossover behavior found in many biological phenomena. Along these lines, the Covid illness in this paper is studied by investigating the elements of COVID-19 contamination utilizing the non-integer Atangana-Baleanu-Caputo derivative. Using the fixed-point approach, the existence and uniqueness of the integral of the fractional model for COVID is further deliberated. Along with Ulam-Hyers stability analysis, for the given model, all basic properties are studied. Furthermore, numerical simulations are performed using Newton polynomial and Adams Bashforth approaches for determining the impact of parameters change on the dynamical behavior of the systems.

14.
Adv Differ Equ ; 2021(1): 387, 2021.
Article in English | MEDLINE | ID: covidwho-1365389

ABSTRACT

In this paper, we consider a fractional COVID-19 epidemic model with a convex incidence rate. The Atangana-Baleanu fractional operator in the Caputo sense is taken into account. We establish the equilibrium points, basic reproduction number, and local stability at both the equilibrium points. The existence and uniqueness of the solution are proved by using Banach and Leray-Schauder alternative type theorems. For the fractional numerical simulations, we use the Toufik-Atangana scheme. Optimal control analysis is carried out to minimize the infection and maximize the susceptible people.

15.
Dyn Games Appl ; 11(4): 892-914, 2021.
Article in English | MEDLINE | ID: covidwho-1155334

ABSTRACT

COVID-19 comes out as a sudden pandemic disease within human population. The pandemic dynamics of COVID-19 needs to be studied in detail. A pandemic model with hierarchical quarantine and time delay is proposed in this paper. In the COVID-19 case, the virus incubation period and the antibody failure will cause the time delay and reinfection, respectively, and the hierarchical quarantine strategy includes home isolation and quarantine in hospital. These factors that affect the spread of COVID-19 are well considered and analyzed in the model. The stability of the equilibrium and the nonlinear dynamics is studied as well. The threshold value τ k of the bifurcation is deduced and quantitatively analyzed. Numerical simulations are performed to establish the analytical results with suitable examples. The research reveals that the COVID-19 outbreak may recur over a period of time, which can be helpful to increase the number of tested people with or without symptoms in order to be able to early identify the clusters of infection. And before the effective vaccine is successfully developed, the hierarchical quarantine strategy is currently the best way to prevent the spread of this pandemic.

16.
Results Phys ; 21: 103771, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-989171

ABSTRACT

In the present study, a nonlinear delayed coronavirus pandemic model is investigated in the human population. For study, we find the equilibria of susceptible-exposed-infected-quarantine-recovered model with delay term. The stability of the model is investigated using well-posedness, Routh Hurwitz criterion, Volterra Lyapunov function, and Lasalle invariance principle. The effect of the reproduction number on dynamics of disease is analyzed. If the reproduction number is less than one then the disease has been controlled. On the other hand, if the reproduction number is greater than one then the disease has become endemic in the population. The effect of the quarantine component on the reproduction number is also investigated. In the delayed analysis of the model, we investigated that transmission dynamics of the disease is dependent on delay terms which is also reflected in basic reproduction number. At the end, to depict the strength of the theoretical analysis of the model, computer simulations are presented.

17.
Results Phys ; 20: 103660, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-983724

ABSTRACT

In this work, we propose a mathematical model to analyze the outbreak of the Coronavirus disease (COVID-19). The proposed model portrays the multiple transmission pathways in the infection dynamics and stresses the role of the environmental reservoir in the transmission of the disease. The basic reproduction number R 0 is calculated from the model to assess the transmissibility of the COVID-19. We discuss sensitivity analysis to clarify the importance of epidemic parameters. The stability theory is used to discuss the local as well as the global properties of the proposed model. The problem is formulated as an optimal control one to minimize the number of infected people and keep the intervention cost as low as possible. Medical mask, isolation, treatment, detergent spray will be involved in the model as time dependent control variables. Finally, we present and discuss results by using numerical simulations.

18.
Annu Rev Control ; 50: 394-408, 2020.
Article in English | MEDLINE | ID: covidwho-813474

ABSTRACT

An extension of the classical pandemic SIRD model is considered for the regional spread of COVID-19 in France under lockdown strategies. This compartment model divides the infected and the recovered individuals into undetected and detected compartments respectively. By fitting the extended model to the real detected data during the lockdown, an optimization algorithm is used to derive the optimal parameters, the initial condition and the epidemics start date of regions in France. Considering all the age classes together, a network model of the pandemic transport between regions in France is presented on the basis of the regional extended model and is simulated to reveal the transport effect of COVID-19 pandemic after lockdown. Using the measured values of displacement of people between cities, the pandemic network of all cities in France is simulated by using the same model and method as the pandemic network of regions. Finally, a discussion on an integro-differential equation is given and a new model for the network pandemic model of each age class is provided.

SELECTION OF CITATIONS
SEARCH DETAIL